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ABSTRACT
We prove that the coefficients of the so-called right 2-characteristic
polynomial of a supermatrix over a Grassmann algebra G = Gy ® Gy
are in the even component Gy of G. As a consequence, we obtain that the

algebra of n x n supermatrices is integral of degree n? over Gy.

1. Introduction

In [K] Kemer developed a structure theory for the T-ideals of identities of as-
sociative algebras over a field of characteristic zero. The T-prime (or verbally
prime) T-ideals play a fundamental role in the above theory and are in the main-
stream of recent research in PI theory (see [AB, B1, B2, P, R}). Kemer proved
that any T-prime T-ideal can be obtained as the T-ideal of identities of one of
the following algebras: M,(K), M,(G) and M, ,(G), where n > u > 1 are
arbitrary integers, K is the base field, G is an infinite dimensional Grassmann
algebra over K, while M,,(K) and M,(G) are algebras of n x n matrices over
K and G, respectively. Our attention is now focused on the third object in the
above list: My, (G) is the algebra of n x n supermatrices over G = Gy @ G,
with Gy blocks of sizes u x u and (n — u) x (n — u) and with G blocks of sizes
u X (n—u) and (n — u) x u. The standard notation for M, ,(G) is M, ,(G) with
v = n—u, however in our notation it is more explicit that we deal with n x n ma-
trices. One of the starting points in the investigation of the identities of M, (K)
is the classical Cayley—Hamilton theorem. Recently the author introduced new
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determinants for n x n matrices over an arbitrary ring. It turned out that these
determinants are extremely useful in the case when the base ring is Lie-nilpotent.
Since G is Lie-nilpotent of index 2, the theory presented in [Sz] can be applied
to M,(G). The so-called right (or left) 2-characteristic polynomial p4(z) of a
matrix A € M, (G) and the corresponding Cayley-Hamilton identity satisfied by
A also seem to occupy a central position in the study of the various identities of
M, (G). In general p4(z) is a polynomial with coefficients in G, i.e. pa(z) € Gjz]
(z is a commuting indeterminate). On imposing certain assumptions on the
shape of a matrix, it is natural to expect its characteristic polynomial to have
some nice extra properties (e.g. the characteristic polynomial of a symplectically
symmetric matrix is a full square). The main aim of the present note is to prove
that the coefficients of the right 2-characteristic polynomial of a supermatrix are
central. More precisely, we show that if A € M, ,(G) then pa(z) € Golz]. A
remarkable consequence of this fact (and of the 2-Lie nilpotent Cayley—Hamilton
identity in [Sz]) is that the subalgebra M, ,,(G) in M, (G) is integral of degree n?
over Gg. This is an improvement of the bound 2n? which is the best known (and
probably the exact) upper bound for the degree of integrality of M, (G) over Go
(see also in [Sz]). A further consequence is that M, ., (G) satisfies a “stronger”
identity of algebraicity than the whole M, (G). In order to give a self-contained
exposition, here we provide all the necessary prerequisites from [Sz].

2. Determinants and characteristic polynomials for n x n matrices

First we recall the definition of the preadjoint. Let A = [a;;] € M,(R) beannxn
matrix over an arbitrary ring R. For the permutations p €Sym({1,2,...,n}) and
7 €Sym({1,...,s —1,s+1,...,n}) we shall make use of the following product:

a(8,7,P) = r(1)p(r(1)) *** Ar(s—1)p(r(s=1))Gr(s+1)p(r(s+1)) ** Cr(n)p(r(n))-

The (two-sided) preadjoint of A is the matrix A* = [a},] € M, (R), where

a':s = ngn(p)a(s, T, P), 1<rs<n
TP

and the sum is taken over all permutations 7 €Sym({1,...,s—1,s+1,...,n})
and p €Sym({1,2,...,n}) with p(s) = r. The right adjoint sequence (Ax)x>1 of
A is defined by the following recursion: A; = A*, and for k > 1 let

Ap1 = (AA;r--- Ap)".
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For an integer m > 1, the right m-determinant rdet(,)(4) € R of A is the
(1,1) entry of the product matrix A4, --- A,;. We note that another possible
definition of rdet,,)(A) is %tr(AAl --- Ap), which coincides with the (1,1) entry
of AA;--- Ay, for an m-Lie nilpotent R (see [D]). Let R[z] denote the ring of
polynomials of the commuting (central) indeterminate z, with coefficients in R.
The right m-characteristic polynomial of A is defined as the right m-determinant
of the matrix A — Ex € M,(R[z]), where E € M,(R) is the unit matrix:

pa(z) = o+ Mz + - + Agz
=rdet(m)(A — Ez) € Rlz], Ao, A1,...,2a€R, Ag#0.

It is not hard to show that d = n™ and Ag = (=1)"[(n — 1)l]i+n+n+tn™7"
Ao =rdet(n,)(A) (see Proposition 4.1 in [Sz]).

A ring R is called m-Lie nilpotent if [[[- - - [[u1,u2] ,us],...], um] , um+1] = 0 for
all u1,u2, U3, - - -, Um, Um+1 € R (here [u,v] = uv — vu). One of the main results
in [Sz} is the following.

THEOREM 2.1: If pa(z) = Mg + AT + -+ + Agz? is the right m-characteristic
polynomial of an n x n matrix A € M,,(R) over an m-Lie nilpotent ring R, then
the left substitution of A into p4(z) is zero: (A)pa = Edg+ AN +---+ A% = 0.

3. Supermatrices over Z;-graded algebras

Let R be an algebra over a field K, then the pair (Ry, Ry) is called a Zs-grading
of R if Ry and R; are K-subspaces of R with the properties: Ry ® R; = R,
R2,R? C Ry and RyRy, R1Ry C R;. Note that the condition R% C Ry implies
that Ry is a subalgebra of R. The elements of Ry U R; are called homogeneous,
the parity of a homogeneous element is even if it is in Ry and odd if it is in R
(Ro N Ry = {0}). The Grassmann algebra G = K (v1,vy,... | viv; +vjv; = 0)
has a natural Z,-grading (Gg, G1), where Gg is the K-subspace of G generated
by the monomials of even length and G, is the K-subspace of G generated by
the monomials of odd length. Clearly, this (Gg, G1) has the following additional
property: gog = ggo and g1h; = —hyg; for all g € G, go € Gy and g1,h1 € G1. A
supermatrix is an n X n matrix A € M,(R) which can be partitioned into square
and rectangular blocks as follows:

A Ap
A=
[An A22] ’

where A is a u X u and Ag; is an (n—u) X (n — u) square matrix over Ry, while
Ajz is au X (n—u) and Ag; is an (n — u) X u rectangular matrix over R;. For
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the integers n > « > 1 and for a fixed Zy-grading (Ro, R1) of R, the set of all
such supermatrices is denoted by M, .(R). It is easy to see that M, ,(R) is a
subalgebra of M, (R). Our results are built on the following crucial observation.

THEOREM 3.1: If A € M, .(R) is a supermatrix, then we have rdet(n)(A4) € Ry
for the right m-determinant of A.

Proof: First we claim that M, ,(R) is closed under the formation of the pread-
joint, i.e. that we have A* € M, ,(R) for A € M, ,(R). The pair (¢,j) is
called the position of the entry a;; in the matrix A. For k,I € {1,2} and
p €Sym({1,2,...,n}) let Ag;(p) denote the number of positions (¢, p(t)), 1 < ¢t <
n falling into the block of A, e.g. A11(p) = [{{t,p(t)) |1 <t <u,1 < p(t) < u}l
Since p is a permutation, each row and each column of A contains exactly one
position of the form (¢, p(t)). In consequence, we get that Ajz(p) = A21(p) =
u — Ay1(p). Thus the number of positions (£, p(t)), 1 < ¢t < n falling into one of
the blocks of A15 and Ajg is even: A1a(p) + A21(p) = 2(u — A11(p)).

In view of RZ,R? C Ry and RyRy, RiRy C Ry, it is clear that the product
a(s, T, p) is homogeneous and its parity equals the parity of the number of posi-
tions (t,p(t)), 1 <t < n, t # s falling into one of the blocks of A and As;. This
number is 2(u— A11(p)) — ®(s), where ®(s) = 1 if the position (s, p(s)) belongs to
one of the blocks of A2 and Az, while ®(s) = 0 if the position (s, p(s)) belongs
to one of the blocks of A;; and Ag;. Since ®(s) and the element Qsp(s) € RoU Ry
are of the same parity, we get that each of the summands in

ar, =Y _sgn(p)a(s, T, p)

P

is homogeneous of the same parity as as,. It follows that a7, is also homoge-
neous and its parity equals to the parity of as,. To prove the claim, it is enough
to note that the entries a,, and a,, in the supermatrix A have the same par-
ity. Since M, ,(R) is closed under multiplication, our claim ensures that the
matrices in the right adjoint sequence (Ax)x>1 of A are in My 4(R). We also
have AA; -+ Am €M, (R) and thus the (1,1) entry (as well as the trace) of
AA;--- A, isin Ry. 1

COROLLARY 3.2: If A € M, .(G) is a supermatrix with respect to the natural
Z,-grading (Go, G,) of the Grassmann algebra G, then the coefficients of the right
2-characteristic polynomial p4 (z) = rdet(s)(A—Ez) are in Gy, i.e. pa(z) € Go [z].

Proof: The polynomial algebra G|z] also has a natural Zj-grading
(Go [z] ,G1[z]), arising from the Zp-grading (Go,G1) of G. Since A € M, .(G),
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the diagonal entries in A — Ex are of the form gy — z with g € Gy. In view of
go—z € Golz], Go C Gy [z] and G1 C Gy [z], we get that A—Ez € M, ,,(G[z]) is
a supermatrix with respect to the Zy-grading (Gp [z], G, [z]). The application of
Theorem 3.1 gives that pa(z) = rdet(y)(A—~Ez) € Gy [z], i.e. that the coefficients
of pa(x) are in Gy. ]

The commutative K-algebra Gy can be viewed as a “diagonal” subalgebra in
M,(G) and thus M, (G) becomes an algebra over Gy. In general the coefficients
of the right 2-characteristic polynomial of a matrix A € M,,(G) are not in G and
so we cannot use Theorem 2.1 directly for proving the integrality of M, (G) over
Go. However, the trick applied on pa(z) = rdet(3)(A — Ex) in the last section
of [Sz] gives that M,(G) is integral of degree 2n? over G;. Now we derive a
stronger result for supermatrices; here an immediate application of Theorem 2.1
and Corollary 3.2 provides the bound n? for the degree of integrality of M, ,(G)
over Gy.

THEOREM 3.3: The algebra of n x n supermatrices My, ,,(G) over the Grassmann
algebra G = K (vy,vs,...) is integral of degree n? over Go (the field K is of
characteristic zero).

Proof: The 2-Lie nilpotency of G enables us to use Theorem 2.1 and so we get
that
EXo+ AM + -+ + A% =0,

where d = n2, A¢ = [(n—1)!]'*" and by Corollary 3.2 we have \; € Go,0 <t < d
for the coefficients of the right 2-characteristic polynomial p4(z) = rdet(s)(A —
Ez) of the supermatrix A € M, ,(G). Since chr(K) = 0, the leading coeflicient
A4 is a nonzero element of K. On multiplying by /\gl, we get that

EQoAY) + A 4+ + AT MgoiA ) + 44 =0

and each of the coefficients )\t)\gl, 0 <t <disin Gy. This completes the
proof. |

Remark 3.4: The “relative” Cayley-Hamilton equation (4.17) or (4.19) in [KT)]
gives that the algebra of 2 x 2 supermatrices M2 1(G) is integral of degree 3 over
Go. In general, the coefficients of the Cayley—Hamilton polynomial (4.15) are
not in Gy (see (4.18) or (4.20)) and thus cannot be used to verify the integrality
of My, .(G) over Go. The so-called invariant Cayley-Hamilton polynomial (see
also in [KT]) of an A € M, 4(G) is in Gy[z], moreover its coeffigjents are polyno-
mial expressions of the supertraces str(A*), k > 1. The well known embedding



234 J. SZIGETI Isr. J. Math.

of M,(G) into Ma, ,(G) (see [AB]) shows that this invariant Cayley-Hamilton
identity for Ma, ,,(G) still cannot be considered as the verification of the integral-
ity of Moy (G) over Go. If B € My, ,,(G) denotes the image of an A € M, (G),
then A = Ag + Ay with 4 € Mu(Go), A € M, (G1) and

4 A
p=[to 4],

Now str(B*) = 0 for all k > 0 and for the above B both forms (6.1) and (6.10) of
the invariant Cayley-Hamilton equation in [KT] have only zero coefficients (for
u = 1 see (6.28)). A slightly modified construction, using zeros in the middle

horizontal and in the middle vertical stripes, gives a similar B in M, ,(G) even
if n # 2u.

The standard polynomial in the non-commuting indeterminates y1,vs,...,yn
is defined as

Sn(y1,¥2,---,YN) = Z SEN(T)Yr(1)Yn(2) ** * Yrr(N)
meSym({1,2,...,N})
and we use it in the formulation of our final result.

COROLLARY 3.5: Sn2([Y™,Z],[Y™1,Z],...,[Y% 2],[Y,Z]) = 0 is a poly-
nomial identity on the algebra M, ,.(G) of n X n supermatrices over the
(infinite dimensional) Grassmann algebra (char(K) = 0).

Proof:  Using the multilinear and alternating properties of S,z, it follows
immediately from Theorem 3.3. |

It would be important to prove that the degree of the integrality of M,(G)
and M, ,(G) over Gy is exactly 2n? and n? (for n > 3), respectively. Clearly, it
is enough to show that 2n? (n?) is the minimal k for which

Sk([Yka Z]’ [Yk_li Z]’ ceey [Y2’ Z]a [Ya Z]) =0

is an identity of M, (G) (of My, .(G) for n > 3).
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